Модели идеальных потоков
Мы будем говорить о потоках идеального
вытеснения и идеального смешения, а также об аппаратах идеального
вытеснения и смешения – моделях аппаратов, через которые протекают
соответствующие потоки. Часто для краткости будем
говорить просто: идеальное вытеснение или идеальное
смешение
.
Идеальные потоки, как и любая
идеализация, – это абстракция, которую нельзя точно осуществить на
практике. Однако ясность физической картины и простота
математического описания идеальных потоков делают эти модели чрезвычайно
удобными для анализа протекания химических процессов
.
В аппарате идеального вытеснения поток
движется совершенно равномерно. В любом поперечном сечении все
частицы имеют одинаковую скорость (рис. 1). Фронт потока движется,
как твердый поршень. Поэтому такой поток иногда
называют поршневым (от английского
piston-flow).
При анализе сложных процессов (например,
реакций, проходящих с выделением и отводом тепла) определение
идеального вытеснения приходится несколько конкретизировать.
Добавляется еще одно свойство.
Не только
скорость, но и концентрации и температуры в таком потоке выровнены по
поперечному сечению. Для изотермических процессов, с анализа которых мы
начнем изложение, эта выровненность получается автоматически, если
выровнены скорости.

Рис.1. Схема потока идеального
вытеснения
.
Для описания, анализа и расчета процессов
существенны два следствия из определения идеального вытеснения
.
Время пребывания всех частиц в потоке
идеального вытеснения одинаково. Это практически единственный
мыслимый поток, для которого формула
дает не только
среднее время пребывания, но и конкретное время пребывания любой
движущейся через аппарат частицы
жидкости.
2. Выделим в потоке малый объем,
занимающий все поперечное сечение и движущийся вместе с потоком (рис. 2).
Такой объем в потоке идеального вытеснения можно рассматривать как
замкнутый. Действительно, в процессе течения ни одна частица не выйдет из
этого объема ни вперед, ни назад (для этого она должна была бы двигаться с
иной скоростью, чем остальные). Точно так же ни одна частица не выйдет в
рассматриваемый объем из таких же объемов, примыкающих к
нему
.
Поэтому кинетика реакции при постоянном
объеме будет описываться уравнениями
:

которые равносильны системе
уравнений

Если объем непостоянен, то выражения
усложняются, но в принципе в любом случае можно записать соответствующую
систему дифференциальных уравнений
.
Решение системы
следует искать в пределах от t=0 (жидкость вошла в
аппарат) до
(выход жидкости из аппарата). В этом
случае получатся концентрации веществ на выходе из аппарата. Это
поверочный расчет. Для проектного расчета в решение системы подставляют
требуемые значения концентраций и находят
,
а затем по формуле
определяют объем
аппарата
.
Пример 1
. Расчет простейших реакций в
изотермическом аппарате идеального вытеснения
.

Рис.2. Схема малого объема, движущегося в
потоке идеального вытеснения
.
1.
Реакция 1-го порядка
А®В.
В этом случае получим

(индекс к
означает условие, относящееся к концу аппарата). Перейдя к степени
превращения, получаем

Если задано сАк, а нужно определить
(проектный расчет), то уравнение (10.17) преобразуется
к виду

или, выразив
дробь под знаком логарифма через степень
превращения

2. Реакция 2-го порядка
А®В.
В поверочном
расчете используем выражение
при n
=2

Преобразование
при
даст

Переход к степени превращения приводит
к формуле

Для проектного
расчета из уравнения (5) легко
получить

Теперь опишем аппарат идеального
смешения. Представим себе аппарат с мешалкой, через который проходит
поток (рис 3) Мощность мешалки такова, что поступающая жидкость мгновенно
перемешивается с массой, уже находящейся в аппарате. Таким образом,
все, что попадает в аппарат идеального смешения, мгновенно
равномерно распределяется по всему его объему
.
Перечислим важнейшие следствия из этого
определения
.
1.Концентрации всех веществ и
температура равномерно распределены по объему аппарата. В любой
паре точек в аппарате любая из этих величин имеет одно и то же
значение
.
2.
Для уточнения следствия 1 следует рассмотреть две точки, о
которых заранее трудно сказать, находятся ли они в аппарате
:
точки
входа и выхода. На выход поток выносит ту жидкость, которая находится в
аппарате. Поэтому на выходе из
аппарата идеального смешения концентрации и температура
– те же, что в объеме
.
На входе
в аппарат концентрации и температура претерпевают скачок: исходные значения параметров
потока, мгновенно смешивающегося с содержимым аппарата,
соответственно мгновенно изменяются до тех значений, которые
характеризуют режим в аппарате и на выходе из него
.
3.Время пребывания в аппарате
идеального смешения распределено неравномерно. Действительно,
распределяя по объему вошедшую порцию жидкости, наша идеальная
мешалка пошлет к выходу некоторые частицы из этой порции и они сразу уйдут
из аппарата, в то время, как другие, попавшие в иные части аппарата,
могут задерживаться в нем весьма надолго
.
4. Аппарат, как и любая его часть,
принципиально открыты.
Смешение в
каждый момент и в каждой точке подводит одни порции жидкости и отводит
другие. Замкнутых объемов нет
.
Отсюда следует, что зависимости

к потоку смешения неприменимы.
Для его описания следует искать иной подход
.
Здесь можно использовать то
обстоятельство,
что во всех точках аппарата
концентрации и температура, а стало быть, и скорость реакции одинаковы
.
Баланс по веществу
J
составим за единицу времени (см. схему на рис. 4). За
это время в аппарат войдет объем жидкости v.
Умножив v на концентрацию вещества J в этой жидкости, получим vcjo –
приход J со входящим потоком.
Соответственно, vcj
– расход J с уходящим потоком. Из
определения скорости реакции следует, что количество вещества J, образующееся (при rJ>0) или расходующееся (при rJ<o) за единицу
времени в объеме аппарата, составляет Va/ rJ.

Рис. 3. Схема аппарата с мешалкой: 1 –
вход потока; 2 – его выход.

Рис. 4. Концентрации
веществ на входе и выходе аппарата идеального смешения:
v – расход
жидкости.
Окончательно уравнение
баланса по J
получает вид

где первый член – приход, второй – расход, а
третий – либо то, либо другое, в
зависимости от знака rJ.
Переход к обобщенному
уравнению баланса производится путем введения в правую его часть
члена, выражающего накопление J

Обратите внимание на одну особенность
уравнения (10). В его правой части стоит член
, в
левой—член
, и
еще два слагаемых. Отсюда следует, что в потоке смешения

Только если v=0, т. е. если мы
исключим поток и
система станет замкнутой, два первых члена в
левой части исчезнут, и
уравнение (10) перейдет в
формулу
.
Для расчетов удобно
сделать простое преобразование, поделив уравнения (9) и
(10) почленно на v.
Получится

и
соответственно

Для условий стационарного процесса
уравнения (11) (такие
уравнения можно записать для каждого вещества, участвующего в
реакции) решают либо относительно
cJ (поверочный
расчет), либо относительно
(проектный
расчет). Уравнение (12) служит для анализа нестационарных процессов.
Пример 2.
Расчет простейших реакций в
аппарате идеального смешения.
Процесс в аппарате идеального смешения по определению всегда изотермичен (нет изменения температуры по аппарату). Поэтому в отличие от примера 1, изотермичность в заголовке не оговорена.
1.
Реакция 1-го порядка А®В
Уравнение
(11) для А имеет вид

Уравнение
баланса по В не
нужно вследствие наличия стехиометрического соотношения

Решения уравнения (13):
при поверочном расчете

откуда

при проектном
расчете

2. Реакция 2-го
порядка А®В

Стехиометрия—та же, что в
предыдущем случае.
Для поверочного расчета имеем

[Второй корень
уравнения (18) отрицателен и потому лишен физического смысла].
Для проектного расчета можно записать

О
реалистичности моделей
идеальных потоков.
Идеальные потоки – сильно упрощенные
модели. Законен вопрос: насколько можно считать их соответствующими
каким-либо реальным объектам. Оказывается, такое соответствие
существует достаточно часто.
Так, к идеальному
вытеснению близок поток жидкости или газа через достаточно длинный
аппарат, заполненный слоем зернистого материала (насадочная колонна,
реактор с неподвижным слоем катализатора, шахтная печь). Зернистый слой
интенсивно выравнивает поток. В меньшей степени можно применить эту
модель к потоку в пустой трубе, особенно в ламинарном
режиме.
Близко к идеальному
смешению течение жидкости через аппарат с мешалкой, через барботажный
слой. В том же барботажном слое течение газа плохо описывается данной
моделью, но часто нам нужно описать именно движение жидкости.
В практических
расчетах процессов мы во многих случаях удовольствуемся моделями идеальных
потоков. Так, рассчитывая время контакта (время протекания реакции) в
каталитическом реакторе или скорость газа в насадочной колонне, мы не
принимаем во внимание реальную неравномерность, размытость этих величин,
т. е. ведем расчет в приближении идеального вытеснения. С другой
стороны, рассчитывая выпарной аппарат с принудительной циркуляцией, мы,
как правило, считаем концентрацию упариваемого раствора одной и той
же во всем объеме, что соответствует идеальному смешению.
Часто такое
пренебрежение неидеальностью потока действительно допустимо, и тогда,
разумеется, применять более сложные модели нецелесообразно. Но есть и
случаи, когда недопустимо грубо пользоваться приближением идеальных
потоков. Поэтому очень важно в каждом конкретном случае оценить возможную
ошибку идеализации, обусловливающую неадекватность
модели.
Сопоставление идеальных потоков проведем
таким образом, как будто имеем дело с реальными аппаратами (можно иметь в
виду случаи, когда данное описание достаточно точно). Вначале сопоставим
особенности описания, а затем – протекание в этих потоках различных
процессов.
Каждый из идеальных
потоков отличает предельная равномерность. В идеальном вытеснении это
равномерность скоростей и времени пребывания, в идеальном смешении –
равномерность концентраций и температуры по объему.
Стационарный процесс
в потоке идеального вытеснения описывается системой дифференциальных
уравнений типа (1). Для идеального смешения этот случай описывается
уравнениями (9) или (11) – конечными уравнениями, не содержащими оператора
дифференцирования. Лишь в нестационарном случае в описании появляются
производные – см. уравнения (10), (12). Объясняется это тем, что в
идеальном смешении равны нулю производные по координатам – градиенты
концентраций и температуры.
В связи с этим
процесс в данном потоке можно описывать так, будто он целиком происходит в
одной точке (от точки к точке ничто не меняется). И в нестационарном
процессе аппарат идеального смешения ведет себя «как точка» – все
изменения происходят во всем объеме одновременно. Такой объект
называют объектом с сосредоточенными параметрами. Аппарат идеального
вытеснения – объект с распределенными параметрами: в нем параметры
процесса меняются от точки к точке. Правда, это простейший из таких
объектов – одномерный, поскольку рассматриваются изменения лишь в
продольном направлении, а поперек потока все считается выровненным. Тем не
менее, описание идеального смешения еще проще. Эта простота привлекательна
с точки зрения математической обработки модели; поэтому, как увидим
ниже, ряд более сложных моделей строится на основе модели
смешения.
Посмотрим теперь, как
равномерность или неравномерность распределения параметров влияет на ход
химической реакции. Рассмотрение будем проводить на примере простейшей
реакции:


Рис.5. График изменения концентрации реагента по длине
аппарата: 1 – поток
идеального вытеснения; 2 – поток идеального смешения.
Многие выводы из
нашего рассмотрения будут верны для большинства формально простых
реакций, обратимых реакций, а также для процессов массо- и
теплообмена, формальное описание которых аналогично описанию
обратимой реакции 1-го порядка.
Вначале проведем
качественный анализ. Равномерность времени пребывания в идеальном
вытеснении способствует глубокому протеканию реакции, так что преимущество
следует отдать потоку вытеснения.
Как влияет на процесс
равномерность концентраций в потоке смешения? Построим график изменения концентрации реагента А по
длине l
аппарата идеального вытеснения,
либо идеального смешения
(рис. 5). На графике l=0 – вход в
аппарат; l= L –
выход. Значения l<0 и l>L соответствуют
трубам, подводящим жидкость к аппарату и отводящим прореагировавшую смесь.
Будем считать заданными исходную концентрацию сао и конечную сАк.
В идеальном
вытеснении легко связать пройденный частицей путь с
временем протекания реакции в этой частице

где w
— линейная
скорость.
Уравнение
(2) соответственно получит вид

(см. экспоненту на
рисунке).
В аппарате смешения
картина совершенно иная. На входе происходит скачок концентрации А до
значения, которое дальше сохраняется вплоть до выхода. По всей длине
аппарата са=сак.
Если теперь
рассмотреть одно и то же произвольное поперечное сечение обоих
аппаратов, то, очевидно, значение са в
аппарате вытеснения окажется больше соответствующего значения в
аппарате смешения. Скорость реакции, пропорциональная са, во всех сечениях аппарата, кроме последнего
(на выходе), также будет большей в аппарате вытеснения, чем в
аппарате смешения. Получить картину, показанную на рис. 5 (одинаковые
начальные и одинаковые конечные са), можно только, если объем
аппарата смешения больше объема аппарата вытеснения.
Отсюда можно сделать
два вывода: 1) аппарат вытеснения обеспечивает большую эффективность
процесса; 2) на кинетику реакции
влияет не только химизм, но и характер потока.
Таким образом, и
анализ распределения времени пребывания, и анализ распределения
концентрации приводят к выводу о большей эффективности потока
вытеснения. Правда, судить об эффективности только по скорости
протекания реакции нельзя. Конструкции аппаратов, близких к
идеальному вытеснению и к идеальному смешению, различны. В частности,
интенсивное перемешивание способствует массо- и теплообмену. Часто
процессы, для которых важен перенос тепла и вещества, проще оформить
в аппарате с перемешиванием, и тогда возникает проблема: чем
жертвовать – простотой конструктивного оформления или отсутствием
продольного перемешивания.
Пример 3.
Проблема выбора типа аппарата.
Проектируется
аппаратурное оформление сильно экзотермической каталитической
реакции. Можно поместить неподвижный катализатор в трубки – поток будет
близок к идеальному вытеснению. Но для обеспечения отвода тепла
трубки придется делать узкими, и следовательно, при данном обгеме
катализатора их будет много. Промышленные реакторы этого типа содержат по
нескольку тысяч трубок – это сложные и дорогие аппараты.
Можно применить
псевдоожиженный слой катализатора – отвод тепла упростится, хотя
вследствие влияния продольного перемешивания придется брать больший объем
аппарата и большее количество катализатора.
Решение вопроса об
эффективности того или иного потока должно, разумеется, базироваться на
количественных оценках, к которым мы и перейдем. По-прежнему будем
анализировать реакцию (21).
Можно сопоставить
выражения (3) и (16). Задав ряд
значений
,
рассчитаем при каждом из них степень
превращения в потоках идеального вытеснения хвыт и
идеального смешения хсм:

При малых значениях
,
соответствующих случаям малого объема аппарата или медленной реакции, разница не очень велика (~6% при
=0,5). При росте
разница может оказаться очень большой.
Еще яснее видно
различие при сопоставлении результатов проектного расчета, когда
задается требуемая величина х и по формулам (4) и (17) совместно с (1)
рассчитываются потребные объемы аппаратов. Приведем значения отношения этих объемов
Vсм/Vвыт при различных требуемых х:

Результаты последнего
сопоставления очень показательны. Если требуется невысокая степень
превращения (менее 0,9), то проигрыш вследствие перехода от идеального
вытеснения к идеальному смешению не слишком велик. Оценивая
эффективность, нужно учитывать и иные факторы. Но если требуется степень
превращения 99% или выше, различие столь велико (в десятки или даже сотни
раз), что ясно: необходимо применять аппараты, максимально близкие к
идеальному вытеснению:
Пример
4. Проблема выбора типа аппарата.
Продолжим
рассмотрение, начатое в примере 3. То обстоятельство, что при небольших
степенях превращения проигрыш вследствие продольного смешения
невелик, позволяет решить две задачи (отвод тепла и глубокое превращение
реагентов) порознь, в разных аппаратах.
Вначале можно
поставить аппарат с интенсивным перемешиванием, получая в нем степень
превращения 80–90% и соответственно отводя 80–90% всего выделяющегося
тепла. А затем направить реагирующую массу в аппарат вытеснения, где
превращение доходит до высокой степени. В этом аппарате отвод тепла
упрощен, так как основная часть его уже отведена на предыдущей
ступени.
Вывод о том, что в
аппарате вытеснения глубина превращения выше, чем в аппарате смешения, и
что преимущество этого потока возрастает по мере роста требуемой степени
превращения, верен для изотермических необратимых и обратимых реакций
любого порядка (кроме нулевого), а также для большинства тепло- и
массообменных процессов. Можно показать, что по глубине протекания
процесса поток идеального вытеснения теоретически наилучший для всех
процессов, скорость которых падает по мере протекания процесса.
Иногда делают
обратный вывод, считая, что если один идеальный поток – Наилучший, то
второй (смешение) – наихудший. Но
это неверно. Существуют потоки, много худшие, чем идеальное смешение –
прежде всего это потоки c большими застойными
зонами или мощными короткими байпасами.
Нужно также иметь в
виду, что существует ряд процессов, в которых закон изменения скорости по
ходу процесса иной. Вначале скорость мала, постепенно она нарастает и
затем, достигнув максимума, начинает спадать (рис. 6). Объясняется это
тем, что в процессе вырабатывается какая-либо субстанция (вещество или
энергия), ускоряющая процесс. Вначале этой субстанции мало, процесс
медленный. По мере протекания он самоускоряется до максимума, после
которого скорость падает вследствие нехватки исходного вещества. Отметим 4
группы таких процессов.
Автокаталитические реакции, в которых один из
продуктов реакции ускоряет процесс. Пока этого продукта мало, реакция
медленная. Накопление катализатора ведет к ускорению реакции до тех
пор, пока в конце процесса убыль исходных веществ не обусловит
снижение скорости.
Биохимические
реакции, вызываемые
микроорганизмами – брожение, ферментация. На начальной стадии
процесса его скорость возрастает в связи с интенсивным размножением
микроорганизмов. В конце процесс замедляется вследствие недостатка
пищи.
Экзотермические реакции, в которых вначале за
счет тепла реакции происходит разогрев, ведущий к росту
скорости.
Процессы кристаллизации.
В начальной стадии процесса скорость
растет благодаря увеличению числа зародышей кристаллизации. Затем
образование новых зародышей прекращается, и скорость снижается
вследствие уменьшения пересыщения.
Если процесс такого
типа проводить в аппарате вытеснения, то на начальном отрезке аппарата
скорость мала, и эта его часть используется неэффективно. В таком случае
более эффективным может оказаться аппарат смешения: в нем просто
поддерживать высокую концентрацию катализатора, микроорганизмов,
зародышей кристаллизации или высокую температуру. Причем эта
оптимальная концентрация или температура поддерживается во всем
объеме аппарата.
После того, как
процесс пройдет через максимум скорости, он будет идти как процесс с
падающей скоростью. Поэтому на этом этапе (на «хвосте» процесса) смесь
выгодно вывести из аппарата смешения и направить в аппарат
вытеснения.
В ряде подобных
случаев процесс можно проводить и в аппарате вытеснения, но тогда для
ускорения процесса на начальной стадии осуществляют циркуляцию: часть
потока, выходящего из аппарата, возвращают на его вход (рис. 7). С этим
циркуляционным потоком в начальный участок аппарата вносится
«затравка», ускоряющая процесс. Можно отметить, что циркуляция вообще
влияет аналогично продольному смешению.
Сложные реакции в идеальных аппаратах.
При проведении сложных реакций с
побочными стадиями обычно главной задачей является достижение высокой
селективности. Зачастую ради этого жертвуют степенью превращения:
недопревратившиеся реагенты можно отделить от вышедшей из аппарата
смеси и вернуть в начало процесса. В результате стоимость переработки
возрастает на величину стоимости процесса разделения. Низкая же
селективность означает, что, во-первых, часть исходных веществ
затрачивается бесполезно (переходит в ненужные побочные продукты).
Во-вторых, эти побочные продукты также приходится отделять:
затраты на разделение
могут быть даже большими, чем при низкой степени превращения. И
в-третьих, с побочными продуктами после их отделения нужно что-то делать.
Просто выбросить их, как правило, нельзя: загрязнение окружающей среды в
наше время становится одной из тяжелейших проблем, стоящих перед
человечеством. Обезвреживание или уничтожение побочных продуктов
ложится тяжелым грузом на экономику процесса.

Рис. 6. График
изменения во времени скорости процесса с
самоускорением.

Рис. 7. Схема
аппарата с циркуляцией.
Характер влияния
потока на сложные реакции отличается большим разнообразием. Рассмотрим два
простых случая: реакцию с последовательной побочной стадией и реакцию
с параллельной побочной стадией.

Рис.8. График
изменения концентраций во времени для последовательной реакции: 1 –
исходное вещество А; 2 – целевой продукт В;
3 – побочный продукт
С.
На рис. 8 показано
изменение концентрации по времени протекания последовательной
реакции:

Если В – целевой
продукт, а С – отброс, то концентрация целевого продукта вначале
растет, проходит максимум и далее падает. Можно показать, что
селективность этой реакции падает с самого начала. Оптимальными будут условия, когда ев не дошло до
максимума: хотя при этом степень превращения А мала, но зато
велика селективность. Если реакция проходит в аппарате идеального
вытеснения, то состав смеси будет соответствовать определенному
значению t (см. рис.
8).
В потоке смешения
положение будет иным. Наряду с частицами, выходящими из аппарата
через малое время после входа, найдутся и такие, которые
задерживаются в нем намного дольше среднего. Как видно из рис. 8, в этих
частицах практически весь реагент А превратится в побочный продукт С. Этот
отброс будет загрязнять выходящую смесь, снижая селективность.
Пример 5.
Расчет селективности последовательной
реакции. Примем в реакции (23) условие k1=k2=k.
Тогда для идеального вытеснения
система уравнений кинетики будет иметь вид (для концентрации С
приведено уравнение стехиометрического баланса):

Ее решение:



откуда для степени превращения А
и селективности легко получить уравнения


Для идеального
смешения уравнения материального баланса по А и по В будут иметь следующий
вид (для С верно записанное выше стехиометрическое
соотношение):
.
Легко получить решение этих уравнений


.
Откуда
.

Сопоставление формул
(24) – (27) показывает, что при равных значениях х величина о в
аппарате идеального вытеснения окажется заметно выше, чем в аппарате
идеального смешения (рис. 9).

Рис.9. Зависимость селективности от степени превращения
реагента:
1 – идеальное вытеснение; 2
– идеальное смешение.
Если бы целевым
продуктом было вещество С, то
выход его был (при заданном
)
много больше в потоке вытеснения, чем в
потоке смешения. И в этом случае поток вытеснения был бы
предпочтительнее.
Для параллельной
реакции (В – целевой продукт)
влияние структуры
потока на селективность зависит от соотношения порядков основной и
побочной стадии.
Если обе стадии –
одинакового порядка, то
соотношение скоростей образования обоих продуктов зависит только от
соотношения констант скорости

В этом случае
селективность не меняется по ходу реакции (если не меняется температура) и
не зависит от типа потока.
Теперь пусть первая
стадия — первого порядка, а вторая – второго. Рассчитаем отношение rB к
rC

Это отношение, а стало быть, и
селективность тем больше, чем меньше cA.
Обратимся к рис. 5.
При заданной степени превращения А его концентрация в любом поперечном
сечении аппарата смешения будет ниже, чем в соответствующем сечении
аппарата вытеснения. Значит, в этом случае процесс в аппарате
идеального смешения будет проходить хотя и медленнее, но зато с
существенно большей селективностью, т. е. именно аппарат смешения окажется
наилучшим.
Нетрудно понять, что
если целевая реакция – второго порядка, а побочная – первого, то все
преимущества будут на стороне идеального вытеснения.
Рассмотрим процессы
полимеризации в потоке. Реакция полимеризации состоит из чрезвычайно
большого числа последовательных стадий присоединения молекул мономера
к растущей цепи. В этом случае нельзя говорить о целевом веществе:
продукт представляет собой смесь макромолекул разной длины. Эту смесь
можно охарактеризовать функцией распределения степени полимеризации (или
длины цепей). Свойства полимера существенно зависят как от средней
длины цепей (математического ожидания), так и от дисперсии этой
величины. В большинстве случаев стремятся получить молекулярно
однородный полимер: продукт с малой дисперсией степени
полимеризации.
Теоретические
исследования и математическое моделирование показали, что влияние
структуры потока на распределение степени полимеризации зависит от
особенностей кинетики полимеризации. Можно выделить два крайних
случая.

Рис.10. График интегральных функций распределения степени
полимеризации
N
полистирола.
Медленный
рост цепей,
который продолжается на протяжении всего
времени пребывания и прерывается на выходе из аппарата. Тогда длина цепи в
основном определяется временем пребывания»
и наибольшая
однородность цепей будет достигаться в аппарате вытеснения.
Быстрый рост цепей,
при котором время роста отдельной цепи
мало. За время пребывания в аппарате многократно наступают начало и конец
роста цепи. Длина цепи в основном определяется концентрациями мономера и
других веществ (инициатора полимеризации, регулятора длины и пр.) в
период ее роста. Поэтому молекулярной однородности будет
способствовать идеальное смешение, выравнивающее концентрации по
всему аппарату. В аппарате вытеснения в этом случае цепи, выросшие в
начале аппарата (высокая концентрация мономера), будут сильно отличаться
от тех, что выросли в его конце.
Пример 6.
Влияние турбулентности на полимеризацию.
Исследована реакция анионной полимеризации стирола с целью получения
максимальной молекулярной однородности. Примерно за 1 мс стирол
смешивали с инициатором и пропускали по трубке (полимеризатору).
Среднее время пребывания составляло от 0,1 до 2 с; после выхода из
трубки полимеризация прекращалась.
На рис. 10 показаны интегральные функции распределения степени полимеризации N, полученные при разных значениях критерия Рейнольдса. Переход от ламинарного потока (Re=1000) к
развитому турбулентному
(Re=15000) привел к
резкому снижению дисперсии
N.