
Optimal Design of Multi-product Batch Plants

Using a Parallel Branch-and-Bound Method

Andrey Borisenko1, Philipp Kegel2, and Sergei Gorlatch2

1 Tambov State Technical University, Russia
borisenko@mail.gaps.tstu.ru

2 University of Muenster, Germany
{philipp.kegel|gorlatch}@uni-muenster.de

Abstract. In this paper we develop and implement a parallel algorithm
for a real-world application: finding optimal designs for multi-product
batch plants. We describe two parallelization strategies – for systems
with shared-memory and distributed-memory – based on the branch-
and-bound paradigm and implement them using OpenMP (Open Multi-
Processing) and MPI (Message Passing Interface), correspondingly. Ex-
perimental results demonstrate that our approach provides competitive
speedup on modern clusters of multi-core processors.

Keywords: multi-product batch plant, parallel optimization, branch-
and-bound, master-worker, global optimization, MPI, OpenMP

1 Motivation and Related Work

Selecting the equipment of a Chemical-Engineering System (CES) is one of the
main problems when designing chemical multi-product batch plants, e.g., for
synthesizing chemical dyes and intermediate products, photographic materials,
pharmaceuticals etc. A solution of this problem comprises finding the optimal
number of devices at processing stages, as well as working volumes or areas of
working surfaces of each of these devices. Working volumes and the areas of
working surfaces are chosen from a discrete set of standard values. One needs to
find an optimal combination of equipment variants using a criterion of optimality,
for example, the minimal total capital equipment costs.

The problem of optimal design of multi-product batch plants is a mixed
integer nonlinear programming (MINLP) problem [5, 15]. Existing techniques
– Monte Carlo method, genetic algorithms, heuristic methods etc. – allow for
obtaining suboptimal solutions. Performing an exhaustive search (pure brute-
force solution) for finding a global optimum is usually impractical because of
the large dimension of the problem. For example, in our earlier work [9], a CES
consisting of 16 stages is presented where each process stage can be equipped
with devices of 5 to 12 standard sizes. Thus, the number of choices in this case
is 516–1216 (which is approximately 1011–1017).

In this paper, we explore the possibility of accelerating the calculations for
finding optimal CES designs using a parallelized branch-and-bound algorithm.



Branch-and-bound is a one of the most popular techniques used for solving
optimization problems in various fields (e.g., combinatorial optimization, artifi-
cial intelligence, etc.). It is also used to solving MINLPs [8]. Branch-and-bound
uses a queue of subproblems obtained by decomposing the original problem: it
systematically enumerates all solutions and discards a large number of them
by using upper and lower bounds of their objective function [3]. In branch-
and-bound, the search space is usually considered as a tree, which allows for a
structured exploration of the search space. Calculations for the various branches
can be carried out simultaneously, which is used to create a parallel version of
this method.

Parallel branch-and-bound algorithms have been discussed extensively in the
literature. Parallel formulations of depth-first branch-and-bound search are pre-
sented in [7]. Mart́ı et al. propose a branch-and-bound algorithm and develop
several upper bounds on the objective function values of partial solutions for
the Maximum Diversity Problem (MDP) [11]. Mansa et al. analyze the perfor-
mance of parallel branch-and-bound algorithms with best-first search strategy
by examining various anomalies on the expected speed-up [10]. In [6], Gen-
dron et al. present several strategies to exploit parallelism using examples taken
from the literature and show that the choice of strategy is greatly influenced
by the parallel machine used, as well as by the characteristics of the problem.
Rasmussen et al. solve discrete truss topology optimization problems using a
parallel implementation of branch-and-bound [16]. In [18], Reinefeld et al. com-
pare work-load balancing strategies of two depth-first searches and propose a
scheme that uses fine-grained fixed-sized work packets. Sanders et al. [19] intro-
duce randomized dynamic load balancing algorithms for tree-structured compu-
tations, a generalization of backtrack search. Aida [1] et al. discuss the impact
of the hierarchical master-worker paradigm on the performance of solving an op-
timization problem by a parallel branch-and-bound algorithm on a distributed
computing system. Bouziane et al. [2] propose a generic approach to embed
the master-worker paradigm into software component models and describes how
this generic approach can be implemented within an existing software compo-
nent model. Cauley et al. [4] present a detailed placement strategy designed
to exploit distributed computing environments, where the additional computing
resources are employed in parallel to improve the optimization time. A Mixed
Integer Programming (MIP) model and branch-and-cut optimization strategy
are employed to solve the standard cell placement problem. In [21], Zhou at
al. present a parallel algorithm for enumerating chemical compounds, which is
a fundamental procedure in Chemo- and Bio-informatics.

The problem of optimal design of multi-product batch plants is also covered
in the literature. Moreno at al. developed a novel linear generalized disjunctive
programming (LGDP) model for the design of multi-product batch plants opti-
mizing both process variables and the structure of the plant through the use of
process performance models [13]. Rebennack at al. [17] present a mixed-integer
nonlinear programming (MINLP) formulation, where non-convexities are due to
the tank investment cost, storage cost, campaign setup cost and variable pro-



duction rates. The objective of the optimization model is to minimize the sum of
the production cost per ton per product produced. In [20], Wang at al. present
a framework for the design and optimization of multi-product batch processes
under uncertainty with environmental considerations.

In this paper, we develop a parallel branch-and-bound algorithm for the
globally optimal design of real-world multi-product batch plants, and implement
it on modern clusters of multi-core processors.

2 Problem Formulation

A chemical-engineering system (CES) is a set of equipment (reactors, tanks,
filters, dryers etc.) which implement the processing stages for manufacturing
certain products. Assuming that each processing stage is equipped with a single
device, the problem can be formulated as follows:

A CES consists of a sequence of I processing stages. Each processing stage
of the system can be equipped with a device from a finite set Xi, with Ji being
the number of device variants in Xi. All device variants of a CES are described
as Xi = {xi,j}, i = 1, I, j = 1, Ji, where xi,j is the main size j (working volume,
working surface, etc.) of the device suitable for processing stage i.

Each variant Ωe, e = 1, E of a CES, where E =
∏I

i=1
(Ji) is the number

of all possible system variants, is an ordered set of devices work sizes, selected
from the respective sets. For example, for a system with 3 processing stages
(I = 3), the first stage may be equipped with devices selected from a set of 2
working sizes, i. e. J1 = 2, X1 = {x1,1, x1,2}, the second stage from 3 working
sizes J2 = 3, X2 = {x2,1, x2,2, x2,3}, and the third stage from 2 working sizes
J3 = 2, X3 = {x3,1, x3,2}. Hence, the number of all possible system variants is
given by E = J1 · J2 · J3 = 2 · 3 · 2 = 12.

As the order of processing stages is predefined, some system variants, e. g.,
{x1,1, x2,1, x3,2}, {x1,2, x2,1, x3,1} are valid, but others, e. g., {x3,1, x2,1, x1,2},
{x2,2, x3,1, x1,1} are not. Each variant Ωe of a system should be in operable
condition (compatibility constraint), i. e. it should satisfy the conditions of a
joint action for all its processing stages: S(Ωe) = 0.

An operable variant of a CES should run at a given production rate in a given
period of time (processing time constraint), such that it satisfies the restrictions
for the duration of its operating period T (Ωe) ≤ Tmax, where Tmax is a given
maximum period of time.

Thus, designing a multi-product batch plant can be stated as the following
optimization problem: to find a variant Ω∗ ∈ Ωe, e = 1, E of a CES, where the
optimality criterion – equipment costs Cost(Ωe) – reaches a minimum and both
compatibility constraint and processing time constraint are satisfied:

Ω∗ = argmin Cost(Ωe), Ω
∗ ∈ (Ωe), e = 1, E (1)

Ωe = {(x1,j1 , x2,j2 , . . . , xI,jI )|ji = 1, Ji, i = 1, I}, e = 1, E (2)



1

2

I-1

I

0

...

...

...

...

...

...

... x1,J1

...

...

...

...

x1,2x1,1

x2,1 x2,2 x1,J2

xI-1,1

... ... ...

xI-1,JI-1xI-1,2 ...

xI,1 xI,2 ... xI,JI
...

root

n1,1 n1,2 n1,J1

n2,1 n2,2 n1,J2

nI-1,1 nI-1,2 nI-1,JI-1

nI,1 nI,2 nI,JI

Fig. 1: Tree traversal in depth-first search.

xi,j ∈ Xi, i = 1, I, j = 1, Ji (3)

S(Ωe) = 0, e = 1, E (4)

T (Ωe) ≤ Tmax, e = 1, E (5)

In this paper, we use the comprehensive mathematical model of CES opera-
tion, including expressions for checking constraints, calculating the optimization
criterion, etc., which was initially presented in [9].

3 Sequential Implementation and Its Optimization

In this section, we describe the sequential implementation of a branch-and-bound
algorithm for finding an optimal CES.

All possible variants of a CES with I stages can be represented by a tree of
height I (see Figure 1). Each level of the tree corresponds to one processing stage
of the CES. Each edge corresponds to a selected device variant taken from setXi,
where Xi is the set of possible device variants at stage i of the CES. For example,
the edges from level 0 of the tree correspond to elements of X1. Each node ni,k

at the tree layer Ni = {ni,1, ni,2, . . . , ni,k}, i = 1, I, k = 1,Ki,Ki =
∏i

l=1
(Jl)

corresponds to a variant of a beginning part of the CES, composed of devices



1 FindSolution () { EnumerateVariants (0); }

2
3 /* recursive tree traversal */

4 EnumerateVariants (level) {

5 if (level < I) {

6 for (j = 1; j <= J[level]; j++) {

7 /* append device variant to beginning part */

8 W[level] = X[level , j];

9 /* check compatibility constraint and upper bound */

10 if (S(W) == 0 && PartCost (W, level) < minCost ) {

11 /* search recursively */

12 EnumerateVariants (level + 1); } } }

13 else { /* leaf node */

14 /* check processing time constraint */

15 if (T(W) <= Tmax ) {

16 /* check optimality criterion */

17 if (Cost (W) < minCost ) {

18 /* make current solution new optimal solution */

19 Wopt = W;

20 minCost = Cost (Wopt ); } } }

21 }

Listing 1: Sequential implementation of branch-and-bound.

for stages 1 to i of the CES. Each path from the tree’s root to one of its leaves
thus represents a complete variant of the CES.

To enumerate all possible variants of a CES in the aforementioned tree, a
depth-first traversal is performed: starting at level 0 of the tree, all device variants
of the CES at a given level are enumerated and appended to the valid beginning
parts of the CES. Valid beginning parts are obtained at previous levels, starting
with an empty beginning part at level 0. This process continues recursively for all
valid beginning parts that result from appending device variants of the current
level to the valid beginning parts from previous levels. When a leaf node is
reached, the recursive process stops and the current solution is compared to the
current optimal solution, possibly replacing it.

Since a complete tree traversal (selecting a device on each edge traversal)
and checking constraints (see Equations 4 and 5) would result in considerable
computational costs, we use the branch-and-bound technique, with pseudo-code
shown in Listing 1. If not stated otherwise, the names of variables correspond
to the names in the problem formulation (see Section 2). The tree traversal
starts by calling procedure EnumerateVariants at level 0 (line 1). This method
continues recursively until the optimal CES Wopt has been found. Here, Wopt is
a vector of length I, specifying the device variant at each stage of the optimal
solution. When traversing the tree, the compatibility constraint (see Equation
4, function S()) is checked for the corresponding part of the CES. In addition,
we compare the cost for the current beginning part of the CES, consisting of the



first level stages (function PartCost()) with a global upper bound (variable
minCost). The initialization of the upper bound is done as sum of all maximum
device costs for each productions stage. If the current beginning part of the
CES fulfills the compatibility constraint and its costs do not exceed the global
upper bound (line 10), we recursively continue tree traversal to the next level
(EnumerateVariants(level + 1), line 12). Otherwise we discard deeper levels
of the tree and backtrack to the previous level. If a leaf node of the tree is
reached (line 13 ff.), the processing time constraint (see Equation 5, function
T()) is checked for the corresponding CES (line 15). If this constraint is fulfilled,
a new solution has been found and its costs (Equation 1, function Cost()) are
compared to the cost of the last known optimal solution (line 17). If a better
solution is obtained, it replaces the previous optimal solution and its costs are
taken as new upper bound (line 19–20).

We developed a C++-based implementation of the presented sequential al-
gorithm to perform runtime experiments. As a test case we used the calculation
of a CES consisting of 16 processing stages (I = 16) with 5 device variants at
every stage. Our experiments were conducted on a system comprising 2 Intel
Westmere processors (X5650, 6 cores, running at 2.6 GHz) and 4 GB RAM. We
use the Intel C++ Compiler version 11.1. We evaluated the execution times of
the algorithm’s parts to identify the most expensive of them. From the averaged
experimental results (Table 1) for our sequential implementation, we observe
that the most expensive operation is calling of T(W) for checking the processing
time constraints of the CES.

Table 1: Averaged execution times of the various algorithm parts.
Algorithm part Execution

time (µs)

Recursive call of EnumerateVariants() 0.1
S(W) 4.0
PartCost(W,level) 0.3
T(W) 417.0
Cost(W) 0.7

The runtimes presented in the table are quite small for a single computation.
But in the searching process with multiple repetitions (billions times) they can
add up to tens and hundreds of hours. For our example (16 processing stages with
5 devices variants each), the overall runtime is 27h 11m. In order to reduce the
algorithm’s runtime, the number of calls of function T(W) has to be minimized.

We have implemented the following optimization of the sequential program.
From Table 1 we deduce that checking the optimality criterion (Cost(W)) is a
comparatively cheap operation. If we execute this operation as early as possi-
ble, we can discard suboptimal solutions without checking the processing time
constraint which is a rather expensive operation. Therefore, we modify the al-



12 ...

13 else { /* leaf node */

14 /* check optimality criterion */

15 if (Cost (W) < minCost ) {

16 /* check processing time constraint */

17 if (T(W) <= Tmax ) {

18 /* make current solution new optimal solution */

19 Wopt = W;

20 minCost = Cost (Wopt ); } } }

21 ...

Listing 2: Optimizing the sequential algorithm by swapping checks of processing
time constraint (slow) and optimality criterion (fast).

gorithm by swapping the checks for the optimality criterion and the processing
time constraint (see Listing 2, lines 15, 17)

To evaluate the performance impact of our optimization, we repeat our mea-
surements for the modified implementation using the aforementioned experi-
mental setup. Our simple optimization reduced the runtime approximately by a
factor of 2 (13h 52m vs. 27h 11m).

4 Parallel Implementation

The tree-like organization of the branch-and-bound search space provides a po-
tential for the parallelization of our algorithm, as all branches of the tree can
be processed simultaneously. In this paper, we use two approaches to parallelize
the algorithm: a shared-memory approach and a distributed-memory approach.

4.1 Shared-memory Approach

In the shared-memory approach, all nodesNi = {ni,1, ni,2, . . . , ni,k}, i = 1, I, k =

1,Ki,Ki =
∏i

l=1
Jl at each layer i of the tree are regarded as independent tasks

that can be executed in parallel. The total number of tasks, Ntasks =
∑G

i=1
Ki,

can be a very large number. Therefore, a granularity parameter G is introduced
to limit the degree of parallelism to a certain level of the tree: subtrees below
the granularity level are not split into tasks but rather processed sequentially.

A pseudo-code for this approach is given in Listing 3. The main difference
as compared to the sequential version is that recursive function calls are per-
formed by newly created concurrent tasks (line 12). Besides, a copy of the current
beginning part of the CES, W, has to be provided to each task.

The merit of this approach is its simple implementation: no communication
is needed between tasks as they rely on shared memory for data exchange.



1 FindSolution () { EnumerateVariants (0); }

2
3 EnumerateVariants (level) {

4 if (level < I) {

5 for (j=1; j <= J[level]; j++) {

6 /* append device variant to beginning part */

7 W[level] = X[level , j];

8 /* check compatibility constraint and upper bound */

9 if (S(W) == 0 && PartCost (W, level) < minCost ) {

10 if (level < G) { /* check granularity */

11 /* create concurrent task */

12 CREATE TASK: EnumerateVariants (level + 1); }

13 else {

14 /* search recursively */

15 EnumerateVariants (level + 1); } } } }

16 else { /* leaf node */

17 ... }

18 }

Listing 3: The shared-memory approach for parallel branch-and-bound.

4.2 Distributed-memory Approach

We use the master-worker paradigm for an alternative, distributed-memory par-
allelization of our algorithm: a single master process dispatches a subset of com-
putations to multiple worker processes and gathers computed results from them.

Master Process The master (see Listing 4) performs a depth-first traversal of
the tree using a recursive procedure MasterEnumerateVariants to some level
G (granularity), 1 ≤ G ≤ I. Using this procedure, the master creates beginning
parts W [i], i = 1, G of the CES (lines 24–29). At the last level of recursion, the
master waits for worker messages (line 32), which can be of two types: solution
(SOLUTION) or job request (REQUEST WORK). If the master receives a so-

lution message (line 33), the costs of the received solution are compared to the
costs of the current optimal solution (optimality criterion, line 35). If a better
solution has been found by the worker, it is stored and replaces the current op-
timal solution (lines 36–38). When a job request is received (line 39), the master
responds by sending job message (DO WORK) containing the current beginning
part of the CES and the current optimal solution to the worker (line 40). After-
wards, a new beginning part of the CES is generated to be passed to a worker
(lines 25–29). If no new beginning part of the CES can be generated, the master
returns from the recursive procedure MasterEnumerateVariants (line 6). The
master continues receiving solutions from workers and compares them to the
optimal solution. However, if a worker sends a job request, the master sends a
quit message (QUIT) to the worker, to terminate the worker process. After quit
messages have been sent to all workers, the master process ends.



1 Master () {

2 /* number of workers (one of processes is master) */

3 num_workers = NUM_PROCESSORS - 1;

4
5 /* start tree traversal */

6 MasterEnumerateVariants(0);

7
8 /* wait for remaining solutions and stop workers */

9 while (num_workers > 0) {

10 msg = ReceiveWorkerMessage ();

11 if (msg.type == SOLUTION ) {

12 /* check optimality criterion */

13 if (Cost (msg.W) < minCost) {

14 /* make solution new optimal solution */

15 Wopt = msg.W;

16 minCost = Cost (msg.W); } }

17 elseif (msg.type == REQUEST_WORK ) {

18 /* stop worker */

19 SendWorkerMessage (msg.workerID , QUIT );

20 num_workers --; } }

21 }

22
23 MasterEnumerateVariants(level) {

24 if (level < G) { /* check granularity */

25 for (j=1; j <= J[level]; j++) {

26 W[level] = X[level , j];

27 if (S(W) == 0 && PartCost (W,level) < minCost ) {

28 /* search recursively */

29 MasterEnumerateVariants(level + 1); } } }

30 else {

31 while (true ) {

32 msg = ReceiveWorkerMessage ();

33 if (msg.type == SOLUTION ) {

34 /* check optimality criterion */

35 if (Cost (msg.W) < minCost) {

36 /* make solution new optimal solution */

37 Wopt = msg.W;

38 minCost = Cost (msg.W); } }

39 elseif (msg.type == REQUEST_WORK ) {

40 SendWorkerMessage (msg.workerID , W, minCost );

41 break; } } }

42 }

Listing 4: Distributed-memory approach: Pseudo-code of master.



Worker Process The worker (see Listing 5) starts by sending a job request
to the master (line 3) and waits for the response. The response can be of
one of two types: job message (DO WORK) or quit (QUIT). If a job mes-
sage comprising a beginning part of the CES and the current upper bound
of the optimality criterion is received, the worker calls the recursive procedure
WorkerEnumerateVariants (line 5–8). Within this procedure, the worker tra-
verses the remaining sub-tree W [i], i = G+ 1, I of the received CES’ beginning
part to find solutions in the same way the sequential algorithm does (lines 5–20
of Listing 1). If the worker finds a solution which costs do not exceed the upper
bound of the optimality criterion (lines 24–27), it makes this solution the new
optimal solution (lines 28–31). When the recursive procedure ends, the worker
sends its new optimal solution, if any, to the master (line 9–11) and requests a
new job. If a quit message is received, the worker process terminates (line 8–9).

The distributed-memory approach is more difficult to implement than the
shared-memory approach: master-worker communication has to be specified ex-
plicitly in order to exchange data in a distributed-memory system. Besides, a
single master constitutes a possible performance bottleneck of this implementa-
tion.

5 Experimental Results

To study the speedup of our two parallelization approaches, we created two
corresponding implementations and conducted runtime experiments on a het-
erogeneous cluster consisting of:

– 36 nodes with 2 quad-core processors (Intel X5550 Nehalem, running at 2.6
GHz) with 3 GB RAM each,

– 198 nodes with 2 hexa-core processors (Intel Westmere X5650, running at
2.6 GHz) with 2 or 4 GB RAM each, and

– 4 nodes with 4 eight-core processors (Intel Xeon E7550, running at 2 GHz)
with 128 GB RAM each.

The nodes are interconnected via Infiniband. Programs were compiled using the
Intel C++ Compiler 11.1.

We study the design of a CES consisting of 16 processing stages with 5
variants of devices at every stage as test case. The implementations are written
in C++ using OpenMP version 3.0 (Open Multi-Processing) [14] for the task-
based approach (see Section 4.1), and the Message Passing Interface (MPI) [12]
for the master-worker approach (see Section 4.2).

The implementation using OpenMP is derived from the sequential imple-
mentation by inserting directives: a parallel construct with a nested single

construct is put around the call of the EnumerateVariants (line 1 of Listing 3),
such that one of these threads starts the recursive tree traversal, while the other
threads stay idle. Within the recursive procedure new tasks are created using



1 Worker () {

2 while (true ) {

3 SendMasterMessage (workerID , REQUEST_WORK );

4 msg = ReceiveMasterMessage ();

5 if (msg.type == DO_WORK ) {

6 minCost = msg.minCost ;

7 foundNewSolution = false;

8 WorkerEnumerateVariants(G + 1);

9 if (foundNewSolution ) {

10 /* send new optimal solution to master */

11 SendMasterMessage (workerID , SOLUTION , Wopt ); } }

12 elseif (msg.type == QUIT ) {

13 break; } }

14 }

15
16 WorkerEnumerateVariants(level) {

17 if (level < I) {

18 for (j=1; j <= J[level]; j++) {

19 /* append device variant to beginning part */

20 W[level] = X[level , j];

21 /* check compatibility constraint and upper bound */

22 if (S(W) == 0 && PartCost (W, level) < minCost ) {

23 /* search recursively */

24 WorkerEnumerateVariants(level + 1); } } }

25 else { /* leaf node */

26 /* check optimality criterion */

27 if (Cost (W) < minCost )) {

28 /* check processing time constraint */

29 if (T(W) <= Tmax ) {

30 /* make solution new (local) optimal solution */

31 Wopt = W;

32 minCost = Cost (Wopt );

33 foundNewSolution = true ; } } }

34 }

Listing 5: Distributed-memory approach: Pseudo-code of worker.



 0

 5000

 10000

 15000

 20000

 25000

1 2 4 6 8 10

E
xe

cu
tio

n 
tim

e,
 s

ec
.

Granularity value

4 cores
8 cores

16 cores
32 cores

(a) Runtime depending on granularity.

 0

 5

 10

 15

 20

 25

 30

 35

1 2 4 8 16 32

S
pe

ed
up

Cores number

Linear Speedup
Measured Speedup

(b) Speedup.

Fig. 2: Experimental results for the OpenMP-based implementation.

the task construct of OpenMP. While the first thread continues creating tasks,
the other threads process these tasks.

We run our OpenMP-based implementation on a single node consisting of
4 CPUs with altogether 32 cores, setting granularity values from 1 to 10. We
observed that for granularity greater than 10, too many tasks were created, such
that the implementation ran out of memory. The results are shown in Figure 2a.
Figure 2b shows the speedup of our OpenMP-based implementation using up to
32 cores. Granularity has been set to 10.

In our master-worker implementation, we use MPI’s point-to-point commu-
nication functions send and recv for exchanging messages between master and
worker. We performed the same measurements on up to 64 Westmere nodes.
Here, we also observed best performance for granularity values from 4 to 14 (see
Figure 3a). The minimum number of processors for running the program is two
(master and one worker). While there is no speedup when using 2 processors, it
increases nearly linearly when using up to 768 processors. With greater numbers
of processors, the growth of speedup slows down. The performance of the master
process may become a bottleneck of application performance when it controls
too many worker processes, because the master frequently communicates with
all workers.

Both implementations provide high scalability. On the same hardware, the
performance of both approaches differs slightly. However, in spite of its more
difficult implementation, the MPI implementation is preferable, because it runs
both on shared-memory machines and on computers with distributed memory.
Currently, shared-memory machines with more processors (hundreds and thou-
sands) are rare, unlike computing clusters. Also with a large number of tasks we
may not have enough memory as in our case when G > 10.

Selecting a suitable granularity value is crucial for optimal performance.
Usually, granularity should be set to a value, such that the number of initial
parts for a system is significantly greater than the number of processors, i. e.∏G

i=0
Ji ≫ Np. However, the distribution of initial parts to processors may be-



 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

1 2 4 6 8 10 12 14 16

E
xe

cu
tio

n 
tim

e,
 s

ec
.

Granularity value

4 nodes
8 nodes

16 nodes
32 nodes
64 nodes

(a) Runtime depending on granularity.

 0

 200

 400

 600

 800

 1000

 1200

 1400

1 2 6 12 24 48 96 192 384 768 1536

S
pe

ed
up

Processors number

Linear Speedup
Measured Speedup

(b) Speedup.

Fig. 3: Experimental results for the MPI-based implementation.

come unbalanced if initial parts for a systems are discarded early by the branch-
and-bound paradigm. Hence, we empirically determined a factor to optimize
load balance. For the above example (16 processing stages with 5 device vari-
ants at each), this factor is 2–3, such that a sensible granularity value G is within
2 · log

5
Np ≤ G ≤ 3 · log

5
Np.

6 Conclusion

We proposed two approaches to implement a parallel branch-and-bound algo-
rithm for solving the optimization problem for multi-product batch plants. Im-
plementations of our approaches based on OpenMP and MPI have been pre-
sented. Runtime experiments for our implementations using a real-world exam-
ple of a multi-product batch plant show that our solution provides considerable
speedup. This is well correlated with experimental results obtained in, e. g., [6],
where also near-linear speedups were observed. Both implementations provide
good parallel scalability.

We also analyzed the impact of the degree of parallelism controlled by a
granularity parameter. From our results we conclude that while the MPI-based
implementation suffers a communication bottleneck for large numbers of pro-
cessors (the reasons for that and methods of overcoming are described in detail
in [1]), it still provides better performance and flexibility as compared to the
OpenMP-based implementation.

In future work we will investigate the use of a hierarchical master-worker
implementation, in order to reduce the communication bottleneck which we ob-
served in our current implementation. This paper presents a parallel version only
of the branch-and-bound algorithm. In addition, quite interesting would be the
parallelization of comprehensive mathematical model of CES operation. This
problem requires also deeper and more detailed research in further works.



Acknowledgement

This work was supported by the DAAD (German Academic Exchange Service)
and by the Ministry of Education and Science of the Russian Federation under
“Mikhail Lomonosov II”-Programme.

References

1. Aida, K., Natsume, W., Futakata, Y.: Distributed computing with hierarchical
master-worker paradigm for parallel branch and bound algorithm. Third IEEE
International Symposium on Cluster Computing and the Grid (CCGrid’03) pp.
156–164 (2003)

2. Bouziane, H.L., Pérez, C., Priol, T.: Extending software component models with
the master-worker paradigm. Parallel Computing 36(2-3), 86–103 (February 2010)

3. Brassard, G., Bratley, P.: Fundamentals of Algorithmics. Prentice Hall (1996)
4. Cauley, S., Balakrishnan, V., Hu, Y.C., Koh, C.K.: A parallel branch-and-cut ap-

proach for detailed placement. ACM Transactions on Design Automation of Elec-
tronic Systems (TODAES) 16(2), 18:1–18:19 (April 2011)

5. El Hamzaoui, Y., Hernandez, J., Cruz-Chavez, M., Bassam, A.: Search for Optimal
Design of Multiproduct Batch Plants under Uncertain Demand using Gaussian
Process Modeling Solved by Heuristics Methods. Berkeley Electronic Press (2010)

6. Gendron, B., Crainic, T.G.: Parallel branch-and-bound algorithms: Survey and
synthesis. Operations Research 42(6), 1042–1066 (1994)

7. Grama, A., Gupta, A., Karypis, G., Kumar, V.: Introduction to Parallel Comput-
ing, Design and Analysis of Algorithms. Addison-Wesley, second edn. (2003)

8. Leyffer, S., Linderoth, J., Luedtke, J., Miller, A., Munson, T.: Applications and al-
gorithms for mixed integer nonlinear programming. Journal of Physics: Conference
Series 180(1), 12–14 (2009)

9. Malygin, E., Karpushkin, S., Borisenko, A.: A mathematical model of the func-
tioning of multiproduct chemical engineering systems. Theoretical foundations of
chemical engineering 39(4), 429–439 (2005)

10. Mansa, B., Roucairol, C.: Performances of parallel branch and bound algorithms
with best-first search. Discrete Applied Mathematics 66(1), 57–74 (1996)

11. Mart́ı, R., Gallego, M., Duarte, A.: A branch and bound algorithm for the maxi-
mum diversity problem. European Journal of Operational Research 200(1), 36–44
(2010)

12. Message Passing Interface Forum: Message Passing Interface Standards Docu-
ments, http://www.mpi-forum.org

13. Moreno, M.S., Montagna, J.M.: Multiproduct batch plants design using linear pro-
cess performance models. American Institute of Chemical Engineer Journal 57(1),
122–135 (2011)

14. OpenMP Architecture Review Board: The OpenMP API specification for parallel
programming, http://www.openmp.org

15. Ponsich, A., Azzaro-Pantel, C., Domenech, S., Pibouleau, L.: Mixed-integer non-
linear programming optimization strategies for batch plant design problems. In-
dustrial & Engineering Chemistry Research 46(3), 854–863 (2007)

16. Rasmussen, M., Stolpe, M.: Global optimization of discrete truss topology design
problems using a parallel cut-and-branch method. Computers & Structures 86(13-
14), 1527–1538 (2008)



17. Rebennack, S., Kallrath, J., Pardalos, P.M.: Optimal storage design for a multi-
product plant: A non-convex minlp formulation. Computers & Chemical Engineer-
ing 35(2), 255 – 271 (2011)

18. Reinefeld, A., Schnecke, V.: Work-load balancing in highly parallel depth-first
search. Scalable High-Performance Computing Conference pp. 773–780 (1994)

19. Sanders, P.: Better algorithms for parallel backtracking. Parallel Algorithms for
Irregularly Structured Problems. Lecture Notes in Computer Science 980, 333–347
(1995)

20. Wang, Z., Jia, X.P., Shi, L.: Optimization of multi-product batch plant design
under uncertainty with environmental considerations. Clean Technologies and En-
vironmental Policy 12, 273–282 (2010)

21. Zhou, J., Yu, K.M., Lin, C., Shih, K.C., Tang, C.: Balanced multi-process parallel
algorithm for chemical compound inference with given path frequencies. In: Hsu,
C.H., Yang, L., Park, J., Yeo, S.S. (eds.) Algorithms and Architectures for Parallel
Processing, Lecture Notes in Computer Science, vol. 6082, pp. 178–187. Springer
Berlin / Heidelberg (2010)


